Most defects today are treated with surgery, catheter procedures, and sometimes medication. Thanks to advances in techniques, surgical and heart catheterization procedures can treat congenital heart defects that once could not be treated effectively.
Cardiac surgery and cardiac catheterizations are now being performed on younger children — in fact, it's common for them to be done during infancy or even the newborn period. This has resulted in many long-term advantages for these children.
Although nothing can be guaranteed with 100% certainty, most kids with heart problems can enjoy happy and healthy futures.
Why Do Some Babies Have Congenital Heart Defects?
The human heart begins to form as a single tubular structure at about the fourth week of pregnancy. By the eighth week, this tube will gradually increase in length, eventually twisting upon itself. A wall, or septum, grows to divide the upper (atrial) and lower (ventricular) chambers into left and right sides. Four valves made of tissue develop, which will keep blood moving forward through the cardiac chambers, lungs, and body as the heart pumps.
Because the placenta (and not the fetus' lungs) does the work of exchanging oxygen and carbon dioxide, it's possible for even severe developmental abnormalities of the heart to exist without causing difficulties for the fetus. Such abnormalities may become important only after the fetus' circulation transitions to the newborn state after birth (when the umbilical cord is clamped at the time of delivery, the placenta is no longer involved in the baby's circulation).
The newborn becomes dependent upon the lungs and circulatory system for the oxygen and blood flow needed to survive outside of the womb. The right side of the heart receives oxygen-poor blood flowing back from the body and pumps it to the lungs, where the circulating blood picks up more oxygen. The left side of the heart receives oxygen-rich blood from the lungs and pumps it out to the body.
Multiple genetic and environmental factors interact to alter the development of the heart during the early stages of a fetus' development (the first 8 to 9 weeks during pregnancy). Sometimes, the cause of a congenital heart defect is known. Certain environmental exposures during the first trimester of pregnancy may cause structural abnormalities (including anticonvulsant medications such as phenytoin, the dermatologic medication isotretinoin, or lithium salts for manic-depressive illness). Uncontrolled diabetes, alcohol or drug abuse, or exposure to industrial chemicals during pregnancy can also increase the risk of congenital heart malformations. But most of the time, the specific cause of congenital heart disease is not known.
Over the past 25 years, advances in ultrasound imaging techniques have led to the availability of sophisticated tools such as fetal echocardiography, making it possible for many congenital heart malformations to be diagnosed as early as the 12th to 20th week of pregnancy. The use of such imaging has reassured many parents-to-be that their baby's heart is normal. For others, it has offered an opportunity to know long before the birth that there's a malformation. This gives the family and doctors the ability to make well-informed decisions about the best treatment options.
Signs and Symptoms of Congenital Heart Disease
After birth, the first sign of congenital heart disease is often the presence of a heart murmur. A murmur in itself is not a disease, but simply a sound. As the heart pumps blood, it sometimes creates vibrations that are heard through the doctor's stethoscope as a noise, or murmur.
Not all heart murmurs are signs of abnormalities — in fact, heart murmurs usually don't indicate the presence of any heart problem. Sometimes, a doctor can determine with the stethoscope alone whether a particular murmur is a sign of heart disease. In other cases, additional tests — such as chest X-rays, electrocardiograms (EKGs), or echocardiograms — are performed to help determine the exact nature of a murmur.
Although many children with minor forms of congenital heart disease may not require any treatment, some can have serious symptoms early on that will require medical or surgical treatment within the first year of life. One such symptom can be breathing difficulties from lung congestion. This is usually the result of excessive blood flow from the left side to the right side of the heart through abnormal connections between the two sides of the circulation, such as holes in the heart (as in ventricular septal defect, atrial septal defect, atrioventricular canal, and patent ductus arteriosus).
Or the congestion could be the result of obstructions to blood flow on the left side of the heart, resulting in a backup of blood in the blood vessels returning blood from the lungs (such as in aortic stenosis, coarctation of the aorta, and hypoplastic left heart syndrome). The shortness of breath in these babies may interfere with their ability to feed and may result in an inability to gain weight adequately. Such babies may require medical treatment or a procedure such as surgery or cardiac catheterization within the first weeks of life.
Other symptoms of congenital heart disease relate to an inadequate amount of oxygen carried within the blood. These infants usually appear to have blue skin, a condition called cyanosis. This can be due to an obstruction of blood flow to the lungs (such as in tricuspid atresia or pulmonary atresia) or due to a hole within the heart that allows oxygen-poor blood to flow from the right to the left side of the heart and out to the body (such as in total anomalous pulmonary venous return or Ebstein's anomaly). It can also be related to an abnormal positioning (transposition) of the arteries leaving the heart. In any of these cases, less red oxygenated blood comes from the lungs and more blue unoxygenated blood is carried to the body, causing the blue skin color.
Treatment for Congenital Heart Defects
Many heart abnormalities (including patent ductus arteriosus, ventricular septal defect, truncus arteriosus, atrioventricular septal defect, tetralogy of Fallot, and transposition of the great arteries) can be corrected with a single operation in early infancy. More complex abnormalities (including hypoplastic left heart syndrome and tricuspid atresia) may require a series of two or three operations beginning in the newborn period and completed at approximately 3 years of age. With most complex abnormalities, the children spend the majority of their time in the care of their parents at home, with occasional visits to the pediatric cardiologist (a heart specialist) as well as to the child's primary care doctor.
Less invasive procedures done in the cardiac catheterization laboratory, rather than the operating room, may be used to treat some conditions. Such treatments may include balloon angioplasty or valvuloplasty to relieve an obstruction of a blood vessel (such as in coarctation of the aorta) or a valve obstruction (such as in pulmonary or aortic stenosis). In these procedures, a pediatric cardiologist inserts a catheter, a thin plastic tube with a special balloon attached, into a blood vessel. The balloon is then inflated to stretch open the narrow area of the blood vessel or heart valve. Another procedure called transcatheter device occlusion may be used to close abnormal openings or holes within the heart or blood vessels (such as in patent ductus arteriosus, atrial septal defects, and ventricular septal defects) without requiring surgery.
Some abnormalities, such as small- or moderate-sized ventricular septal defects, may close or decrease in relative size as your child grows. While waiting for the hole to close, the doctor may prescribe medicines for your child, which some kids also need to take after surgery.
Whether treated surgically or medically, your child will need to regularly visit a pediatric cardiologist. At first, these appointments may be fairly frequent (perhaps every month or two), but after treatment, they may be cut back, sometimes to just once a year. Your child's cardiologist may use tools like X-rays, electrocardiograms, or echocardiograms to monitor the defect and the effects of treatment.
Preventing Infection
Kids with congenital heart disease are at risk for the development of bacterial endocarditis, an infection of the tissue that lines the heart and blood vessels. This serious illness requires prolonged treatment with intravenous antibiotics in a hospital setting.
Any time a child has a surgical procedure, the surgical incision can introduce bacteria into the bloodstream. Although the white blood cells of the body usually destroy these germs before an infection can occur, the rough surfaces that may be present within a congenitally malformed heart may allow some germs to survive and reproduce, resulting in an infection of the heart lining.
Fortunately, the risks of bacterial endocarditis can be greatly reduced by taking a dose of specific antibiotics before any scheduled medical procedures that have a risk for introducing germs into the bloodstream. This includes dental work and certain types of surgery.
However, some parents misinterpret this to mean that dental visits and cleanings are potentially dangerous and that they can avoid risk by avoiding the dentist. This is incorrect! In fact, the riskiest thing to do is to ignore dental health, which may allow teeth to develop cavities and gums to become infected. Along with taking antibiotics correctly, it's important for children with heart defects to take good care of their teeth by brushing and flossing properly. Your child should begin visiting a dentist as early as possible, and those visits should be as frequent as the dentist recommends.
Taking measures to prevent bacterial endocarditis is recommended for kids with almost all congenital cardiac malformations (except in the case of isolated ostium secundum and atrial septal defect). Discuss these preventive measures with your child's doctor, pediatric cardiologist, and dentist. Local chapters of the American Heart Association (AHA) or your pediatric cardiologist can give you free wallet cards detailing the recommended antibiotics and their appropriate doses.
If You Suspect a Problem
Although sudden serious downturns during or after cardiac treatment aren't common, you should watch for certain signs that could signal a need for medical attention. If your child appears to be working harder than normal to breathe, call your child's doctor right away.
Other signs that warrant immediate medical attention include:
- a bluish tinge or color (cyanosis) to the skin around the mouth or on the lips and tongue
- an increased rate of breathing or difficulty breathing
- poor appetite or difficulty feeding (which may be associated with color change)
- sweating while feeding
- failure to thrive (failure to gain weight or weight loss)
- decreased energy or activity level
- prolonged or unexplained fever
Call the doctor immediately if your child has any of these symptoms.
Caring for Your Child
Parenting kids with heart defects includes learning about basics like feeding, giving medicines, and watching for signs of trouble, but it also involves encouraging kids to become involved in their own care.
Because most congenital heart defects are now treated during infancy, it's often necessary to explain to an older child what happened in the past. When your child is old enough to understand, explain why he or she has a surgical scar, needs to take medication, or needs to visit the pediatric cardiologist. Describe the treatment in a way your child can understand and don't try to hide the details.
If kids believe they have a role in their care, they're likely to be more confident and positive. Your doctor may be able to suggest ways to discuss these issues.
Participation in some physical activities may be limited, but kids can still play and explore with friends. Always check with your child's cardiologist about which activities your child should or should not be doing. Certain competitive sports may be restricted, for example.
Although it's tempting for parents to be overly protective, sheltering kids can make them feel isolated and stigmatized — which may do more harm than a heart defect in the long run. So do everything you can to make sure your child leads as normal a life as possible.